Heavy Quark Production in PHENIX

Alan Dion of

for the PHENIX collaboration

- Created during initial hard scattering → it is a hard probe
 - Yield is insensitive to final state effects
 - ightharpoonup Yield obeys N_{coll} scaling \leftarrow pQCD
- Heavy quark suppression is sensitive to the initial temperature and gluon density
- \bigcirc Open charm measurement serves as a baseline for J/ψ measurement
- Heavy quark anisotropies provide information about thermalization

Figure 1: Charm electron yield (0.8 < $p_T < 4.0~GeV/c$) from Au+Au collisions at 200 GeV/c scaled by N_{coll}

Figure 2: Illustration of charm decay

Figure 3: Schematic of PHENIX central arms

- Measure D and B mesons indirectly through electron spectra
 - Can't yet directly reconstruct charm/bottom decays

- Tracking:
 - Drift Chamber
- **Electron Identification:**
 - Ring-Imaging Cherenkov Detector
 - PbSc and PbGl electromagnetic calorimeters
 - E/p distribution

Figure 4: E/p distribution for p_T between 2.0-2.5 GeV/c

Figure 5: Flip-and-slide method for the RICH detector

Some hadrons are randomly associated with a RICH ring. These are statistically subtracted by "flipping and sliding" the RICH hits in software.

Dalitz decay of light neutral mesons

- $\pi^0 \rightarrow \gamma e^+ e^-$
- \Leftrightarrow also from $\eta, \omega, \eta', \phi$
- $\gamma \rightarrow e^+e^-$ in material
 - \Rightarrow main photon source: $\pi^0 \to \gamma \gamma$
 - beampipe, detector material, air
- Weak kaon decays
 - $K^{\pm} \rightarrow \pi^0 e^{\pm} \nu_e$
- Di-electron decays of vector mesons
 - $\rho, \omega, \phi \to e^+e^-$
- Direct/thermal radiation
- Heavy flavor decays

Figure 6: Inclusive electrons and cocktail predictions for run 3 p+p

Cocktail subtraction

- Relevant background sources are measured
- Decay kinematics and photon conversion rate are calculated
- Background cocktail is subtracted from the inclusive spectrum
- \bigcirc Performs well at high p_T where signal/background is large
- Not limited by statistics

Converter subtraction

- Add material of known thickness to the experiment and compare the electron spectra with and without the material installed
- \bigcirc works best at low p_T where photonic sources are significant
- Limited by statistics of converter run

Figure 7: Inclusive electrons and cocktail predictions for Au+Au collisions at $\sqrt{s}=200~GeV/c$

Figure 8: Ratio of non-photonic to photonic electrons from Au+Au collisions in run4 (black) and run2 (blue) converter runs

- FONLL: Fixed Order Next-to-Leading Log pQCD
 - M. Cacciari, P. Nason, R. Vogt PRL95, 122001 (2005)
- Spectra are harder than FONLL
- Open questions
 - Hard fragmentation?
 - Enhanced bottom?
 - Heavy quarks from jet fragmentation?
- Rapidity dependence needed
 - PHENIX μ data $(1.2 < |\eta| < 2.4)$

Figure 9: Electrons from heavy flavor decays compared with PYTHIA LO (K=3.5) and FONLL pQCD

- Prompt muons
 - mainly from c, b
 - PYTHIA: <15% from $\rho, \omega, \phi \rightarrow \mu^{+}\mu^{-}$ for $p_T > 0.9$ GeV/c
- Decay muons
 - \hookrightarrow From π, K
 - \bigcirc Important at all p_T
- Punch-through hadrons
 - small, uncertain contribution
- Stopped hadrons

Figure 10: Schematic of PHENIX muon arms

Alan Dion

- Decay muons obtained from vertex distribution
 - Yield of decay muons increases linearly with distance between collision vertex and absorber
- Punch-through hadrons calculated from a data-driven absorption model:
 - Tracks reaching gap 2 (3), but not gap 3(4)
 - Tracks reaching gap 4
 - Nuclear interaction lengths (FLUKA, GHEISHA)
- Decay muons obtained from vertex distribution
 - Subtract decay muons and punch-through hadrons from inclusive yield at gap 4

Figure 11: Background composition in muon arms

Figure 12: Longitudinal momentum in gap 3

- Prompt μ^- spectrum from p+p collisions at $\sqrt{s} = 200$ GeV
- Prompt μ^+ spectrum has much larger uncerntainty due to punch-through hadrons

Figure 13: μ^- spectrum vs. FONLL

- Prompt μ^- spectrum at $\eta = -1.65$ is comparable to heavy flavor e^\pm spectrum at y=0
- Excess over PYTHIA and FONLL
- Heavy flavor rapidity distribution wider than expected from pQCD

Figure 14: Electrons from heavy flavor from d+Au collisions compared to those from p+p

No significant cold nuclear matter effects of heavy flavor at y=0

Figure 15: R_{dA} for μ^-

- Suppression in d-going direction → CGC?
- ☼ Enhancement in Au-going direction → anti-shadowing? recombination?

Figure 16: Non-photonic spectra of electrons from run4 Au+Au data comared to scaled p+p fit

 \triangleleft Strong modification of spectra at high p_T

Figure 17: R_{AA} for 60-92% centrality

$$R_{AA} \equiv \frac{dN_{AA}}{\langle T_{AA} \rangle dN_{pp}}$$

Figure 18: R_{AA} for 40-60% centrality

Figure 19: R_{AA} for 20-40% centrality

Figure 20: R_{AA} for 10-20% centrality

Figure 21: R_{AA} for 0-10% centrality

Figure 22: R_{AA} for 0-10% centrality compared to theoretical predictions

- (1) (3): N Armesto, et al., PRD 71, 054027 only contains charm contribution
 - $\hat{q} \equiv \text{transport coefficient } \propto \text{density of scattering centers in medium}$

yellow bands: S. Wicks, W. Horowitz, M. Djordjevic, M. Gyulassy nucl-th/0512076

- The lower band contains elastic energy loss in addition to radiative energy loss
- $\frac{dN_g}{dy} = 1000$

$$\frac{dN}{d\phi} = \frac{dN_{photonic}}{d\phi} + \frac{dN_{non-photonic}}{d\phi} \propto 1 + v_2 cos(2(\phi - \Psi))$$

$$v_{2non-\gamma} = \frac{1 + v_2 R_{NP} - v_{2\gamma}}{R_{NP}}$$

Photonic electron v_2 determination

Converter method:

Measure inclusive $e^{\pm} v_2$ with/without converter

Separate non-photonic and photonic v_2

Cocktail method:

Determine photonic $e^{\pm} v_2$ reaction-plane-dependent cocktail

Figure 23: Illustration of elliptic flow

Figure 24: $e^{\pm} v_2$ compared to model from van Hees et al., PRC73 034913 (2006)

Figure 25: $e^{\pm} v_2$ compared to model from Greco et al., PLB 595 (2004) 202

- Measurement of electrons at y=0 and muons at $\eta = -1.65$ from semileptonic heavy flavor decays
 - p_T spectra harder than FONLL and PYTHIA predictions
 - Rapidity distribution is wider than expected from pQCD
- Improvements from ongoing run 5/6 analyses
 - Extend electron spectra to lower $p_T \rightarrow \text{improved charm cross section}$ measurement
 - Extend electron spectra to higher $p_T \rightarrow \text{improved estimate of bottom contribution}$
 - Improved background subtraction for prompt muon measurement

- No significant cold nuclear matter effects observed for electrons from heavy flavor decays at y=0
- Indications for cold matter effects for prompt muons at forward/backward rapidity
 - Suppression in d-going direction
 - Enhancement in Au-going direction

- \Leftrightarrow Electrons from heavy flavor at y=0
 - Yield follows binary scaling (hard probe)
 - p_T spectra stronly modified by the medium
 - v_2 indicates charm flow
- Charm quarks seem to interact with the medium similarly to light quarks
- What's the deal with bottom?

- Hadron Blind Detector
 - Dalitz/conversion background rejecton for single electrons and electron pairs
- Silicon Vertex Tracker
 - Direct tagging of charm/bottom decays \rightarrow distiguish charm from bottom signal and measure v_2 of D meson
- New reaction plane detector
 - \triangleright High p_T non-photonic electron v_2